考研求导公式主要包括以下几类:
常数函数求导
\( f(x) = c \),则 \( f'(x) = 0 \)
幂函数求导
\( f(x) = x^n \),则 \( f'(x) = n x^{n-1} \)
指数函数求导
\( f(x) = e^x \),则 \( f'(x) = e^x \)
对数函数求导
\( f(x) = \log_a(x) \),则 \( f'(x) = \frac{1}{x \ln a} \)
三角函数求导
\( f(x) = \sin x \),则 \( f'(x) = \cos x \)
\( f(x) = \cos x \),则 \( f'(x) = -\sin x \)
\( f(x) = \tan x \),则 \( f'(x) = \sec^2 x \)
\( f(x) = \cot x \),则 \( f'(x) = -\csc^2 x \)
\( f(x) = \arcsin(x) \),则 \( f'(x) = \frac{1}{\sqrt{1 - x^2}} \)
\( f(x) = \arccos(x) \),则 \( f'(x) = -\frac{1}{\sqrt{1 - x^2}} \)
\( f(x) = \arctan(x) \),则 \( f'(x) = \frac{1}{1 + x^2} \)
\( f(x) = \text{arcctan}(x) \),则 \( f'(x) = -\frac{1}{1 + x^2} \)
反三角函数求导
\( f(x) = \arcsin(x) \),则 \( f'(x) = \frac{1}{\sqrt{1 - x^2}} \)
\( f(x) = \arccos(x) \),则 \( f'(x) = -\frac{1}{\sqrt{1 - x^2}} \)
\( f(x) = \arctan(x) \),则 \( f'(x) = \frac{1}{1 + x^2} \)
\( f(x) = \text{arcctan}(x) \),则 \( f'(x) = -\frac{1}{1 + x^2} \)
复合函数求导
\( f(g(x)) \),则 \( f'(x) = f'(g(x)) \cdot g'(x) \)
和、差、积的求导
\( (f(x) + g(x))' = f'(x) + g'(x) \)
\( (f(x) - g(x))' = f'(x) - g'(x) \)
\( (f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x) \)
商的求导
\( \left( \frac{f(x)}{g(x)} \right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g(x)^2} \)
高阶导数公式
一阶导数: \( f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \)
二阶导数: \( f''(x) = \lim_{h \to 0} \frac{f'(x + h) - f'(x)}{h} \)
三阶导数: \( f'''(x) = \lim_{h \to 0} \frac{f''(x + h) - f''(x)}{h} \)
四阶导数: \( f''''(x) = \lim_{h \to 0} \frac{f'''(x + h) - f'''(x)}{h} \)
这些公式是考研数学中常用的求导公式,掌握这些公式对于解决考研中的